

Pure Mathematics 1

	Title	Estimated hours
$\underline{1}$	Algebra and functions	
a	Algebraic expressions: basic algebraic manipulation, indices and surds	4
$\underline{\text { b }}$	Quadratic functions: factorising, solving, graphs and discriminants	4
C	Equations: quadratic/linear simultaneous	4
d	Inequalities: linear and quadratic (including graphical solutions)	5
e	Graphs: cubic and reciprocal	5
$\underline{\text { f }}$	Transformations: transforming graphs; $\mathrm{f}(x)$ notation	5
2	Trigonometry	
a	Trigonometric ratios and graphs, and area of a triangle in the form $\frac{1}{2} a b \sin C$	6
\underline{b}	Radians (exact values), arcs and sectors	4
3	Coordinate geometry in the ($\boldsymbol{x}, \boldsymbol{y}$) plane: Straight-line graphs, parallel/perpendicular, length and area problems	6
4	Differentiation	
a	Definition, differentiating polynomials, second derivatives	6
	Gradients, tangents and normals	5
5	Integration: Definition as opposite of differentiation, indefinite integrals of x^{n}	6
		60 hours

Pure Mathematics 2

Unit	Title	Estimated hours
1	Proof: Examples including proof by deduction, proof by exhaustion and disproof by counter-example	4
2	Algebra and functions: Algebraic division and the factor and the remainder theorems	4
3	Coordinate geometry in the (x, y) plane: Circles: equation of a circle, geometric problems on a grid	7
4	Sequences and series	
a	Recurrence and iterations	3
\underline{b}	Arithmetic and geometric sequences and series (proofs of 'sum formulae')	4
c	Sigma notation	2
d	The binomial expansion	7
5	Exponentials and logarithms: Exponential functions and the laws of logarithms	8
6	Trigonometry: Trigonometric identities and equations	10
7	Differentiation: Maxima and minima	4
8	Integration	
$\underline{\text { a }}$	Definite integrals and areas under curves	5
$\underline{\text { b }}$	The trapezium rule	2
		60 hours

Further Pure Mathematics 1

Unit	Title	Estimated hours
$1 \begin{array}{lll}1 & \\ & \underline{a} \\ & \underline{b} \\ & \\ & \\ & \\ & \end{array}$	Complex numbers	
	Introduction of complex numbers, basic manipulation	3
	Complex conjugate, division and solving polynomial equations	5
	Argand diagrams	2
	Modulus and argument	4
2	Roots of quadratic equations	
	Roots of polynomial equations	4
	Formation of polynomial equations	2
3	Numerical solution of equations:	
	Numerical solution of equations	4
	Newton-Raphson method	2
4	Coordinate systems	
	Equations of parabola and rectangular hyperbola and the focus-directrix properties of the parabola	6
	Tangents and normals to the parabola and hyperbola	4
$5 \begin{array}{ll}5 \\ & \\ & \underline{a} \\ & \underline{b}\end{array}$	Matrix algebra integration	
	Matrix addition, subtraction and multiplication	3
	Inverse of 2×2 matrices	3
6	Transformations using Matrices: Linear transformations	8
7	Series: Sums of series	4
8	Proof: Proof by mathematical induction	6
		60 hours

A level Mathematics: Further Pure Mathematics 2

Further Pure Mathematics 2

Unit	Title	Estimated hours
1	Inequalities: Algebraic inequalities and inequations	5
2	Series: Method of differences	4
3	Further complex numbers	
a	Know and use $z=r \mathrm{e}^{\mathrm{i} \theta}=r(\cos \theta+\mathrm{i} \sin \theta)$	3
\underline{b}	De Moivre's theorem	5
c	Loci	3
d	Elementary transformations from the z-plane to the w-plane	5
4	First order differential equations	
a	Integrating factors to solve first order differential equations	5
\underline{b}	Differential equations reducible by means of a given substitution	3
5	Second order differential equations	
a	Second order differential equations of the form $a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=\mathrm{f}(x)$	6
b	Differential equations reducible by means of a given substitution	3
6	Maclaurin and Taylor series	
a	Maclaurin series	5
b	Derivation and use of Taylor series	4
7	Polar coordinates	
a	Convert between Cartesian and polar and sketch $r(\theta)$	4
\underline{b}	Area enclosed by a polar curve	5
		60 hours

A level Mathematics: Pure Mathematics 3

Further Pure Mathematics 3

Unit	Title	Estimated hours
$\begin{array}{lll}1 & \\ & \underline{a} \\ & \underline{b}\end{array}$	Hyperbolic functions	
	$\sinh x, \cosh x, \tanh x$ and their inverses	4
	Logarithmic forms of the inverse hyperbolic functions, solving equations involving hyperbolic functions	4
2	Further coordinate systems	
	Equations of the ellipse and hyperbola and their focus-directrix properties	3
	Tangents and normals to the ellipse and hyperbola	3
	Simple loci problems	4
3	Differentiation	
	Differentiate the hyperbolic functions	3
	Differentiate inverse trigonometric and hyperbolic functions	4
4	Integration	
	Integration of the hyperbolic and inverse hyperbolic functions	3
	Integrate using hyperbolic and trigonometric substitutions	3
	Reduction formulae	4
	The calculation of arc length	2
	The calculation of the area of a surface of revolution	2
5	Vectors	
	The vector product $\mathbf{a} \times \mathbf{b}$ and the scalar triple product $\mathbf{a} . \mathbf{b} \times \mathbf{c}$, and their applications	3
	Problems involving points, lines and planes	5
	Vector and Cartesian equations of a line and a plane	3
6	Further matrix algebra	
abc	Linear transformations	2
	Inverse of and 3×3 matrices	2
	Eigenvalues and eigenvectors of 2×2 and 3×3 matrices	4
d	Reduction of symmetric matrices to diagonal form	2
		60 hours

A level Mathematics: Mechanics 1

Mechanics 1

Unit	Title	Estimated hours
1	Quantities and units in mechanics: Introduction to mathematical modelling and standard S.I. units of length, time and mass	1
2	Vectors in mechanics	
	Definitions, magnitude/direction, addition and scalar multiplication	7
	Position vectors, distance between two points, application of vectors to displacement, velocity, acceleration and forces	7
$3 \begin{array}{ll} \\ & \\ & \underline{a} \\ & \underline{b}\end{array}$	Kinematics of a particle moving in a straight line	
	Graphical representation of velocity, acceleration and displacement	5
	Motion in a straight line under constant acceleration; suvat formulae for constant acceleration; Vertical motion under gravity	6
cd	Forces and Newton's laws	
	Newton's first law, Newton's third law, force diagrams	3
	Newton's second law, ' $\mathrm{F}=\mathrm{ma}$ ', resolving forces, connected particles, problems involving smooth pulleys	8
	Momentum and impulse; derivation of units and formulae Impulse-momentum principle. Conservation of momentum applied to collisions and 'jerking' string problems	8
	Friction forces (including coefficient of friction μ)	4
5	Statics of a particle: Equilibrium, Forces in vector form, Maximum value of the frictional force	4
6	Moments: Forces' turning effects	7
		60 hours

A level Mathematics: Mechanics 2

Mechanics 2

Unit	Title	Estimated hours
1	Kinematics of a particle moving in a straight line or plane	
$\underline{\square}$	Motion in a vertical plane under gravity; projectiles	6
	Variable acceleration (use of calculus and finding vectors $\dot{\boldsymbol{r}}$ and $\ddot{\boldsymbol{r}}$ at a given time)	6
$\begin{array}{rrr}2 & \\ & \underline{a} \\ & \underline{b} \\ & \\ & \end{array}$	Centres of mass	
	Centre of mass of a discrete mass distribution in one or two dimensions, framework and uniform lamina (rectilinear shapes)	5
	Centre of mass of triangular, circular-based and composite laminas and centre of mass of a uniform circular arc	5
	Modelling equilibrium: hanging bodies and systems free to rotate (about a fixed horizontal axis)	4
$\underline{\mathrm{b}}$$\underline{\text { c }}$	Work and energy	
	Work and kinetic energy; derivation of units and formulae	4
	Potential energy, work-energy principle, conservation of mechanical energy, problem solving	6
	Power; derivation of units and formula	4
a$\underline{\mathrm{b}}$c	Collisions	
	Momentum as a vector (i, \mathbf{j} problems); Impulse-momentum principle in vector form	4
	Direct impact of elastic spheres. Newton's law of restitution. Loss of kinetic energy due to impact	6
	Problem solving (including 'successive' impacts)	4
5	Statics of rigid bodies: Equilibrium and statics (including ladder problems)	6
		60 hours

A level Further Mathematics: Mechanics 3

Mechanics 3

Unit	Title	Estimated hours
1	Further kinematics: Motion in a straight line when the acceleration is a function of the displacement (x) or time (t); Setting up and solving differential equations	6
2	Elastic strings and springs and elastic energy	
	Hooke's law and definition of modulus of elasticity. Derivation of elastic potential energy formula	6
	Problem solving: equilibrium and using the work-energy principle	5
3	Further dynamics	
a	Particle moving in straight line with variable applied force; Using $F=m a$ to set up differential equations and solving	6
\underline{b}	Newton's law of gravitation	4
c	Simple harmonic motion	5
4	Motion in a circle	
$\underline{1}$	Angular speed, central force, radial acceleration	3
\underline{b}	Uniform motion in a horizontal circle	6
c	Motion in a vertical circle	6
$\begin{array}{rrr}5 & \\ & \underline{\mathrm{a}} \\ & \underline{\mathrm{b}} \\ & \underline{c} \\ & \\ & \underline{c}\end{array}$	Statics of rigid bodies	
	Centre of mass of uniform rod, lamina, 3D rigid body using integration (and symmetry); Deriving formulae in formula book	5
	Centre of mass of composite bodies; Simple cases of equilibrium of rigid bodies.	4
	Conditions for toppling/sliding	4
		60 hours

Statistics 1

Unit	Title	Estimated hours
a\underline{b}	Representation and summary of data	
	Calculation and interpretation of measures of location; Calculation and interpretation of measures of variation; Understand and use coding	5
	Use statistical diagrams for single-variable data to draw simple conclusions and to compare distributions; Understand and identify outliers; Understand and determine skewness	8
2 \underline{a} \underline{b}	Probability:	
	Mutually exclusive events; Independent events	4
	Using set notation for probability; Conditional probability	6
3 a b	Correlation and regression	
	Scatter diagrams and least squares linear regression	9
	The product moment correlation coefficient	7
$\begin{array}{rrr}4 & \\ & \underline{a} \\ & \underline{b}\end{array}$	Discrete random variables	
	Use a discrete probability distribution to model simple situations; Identify the discrete uniform distribution	6
	Mean and variance of discrete probability distributions	7
5	The Normal distribution: Understand and use the Normal distribution	8
		60 hours

Statistics 2

Unit	Title	Estimated hours
$\begin{array}{lll}1 & \\ & \text { a } \\ & \text { b } \\ & \mathrm{b} \\ & \text { c } \\ & \mathrm{c} \\ & \mathrm{d}\end{array}$	The binomial and Poisson distributions	
	The binomial distribution	5
	The Poisson distribution	6
	Mean and variance of the binomial and Poisson distributions	5
	Poisson distribution as an approximation to the binomial distribution	5
2	Continuous random variables	
	Continuous random variables, the probability density function and the cumulative distribution function	9
	Summary statistics for continuous random variables	6
3	Continuous distributions	
	The continuous uniform distribution	3
	Using the Normal distribution as an approximation to the binomial and Poisson distributions; Selecting the appropriate distribution	7
$\begin{array}{rrr}4 & \\ & \underline{\mathrm{a}} \\ & \\ & \underline{\mathrm{b}} \\ & \underline{c} \\ & \underline{\mathrm{c}} \\ & \underline{\text { d }}\end{array}$	Hypothesis tests	
	Introduction to sampling terminology; Advantages and disadvantages of sampling	3
	Language of hypothesis testing; Significance levels; Critical regions	2
	Carry out hypothesis tests involving the binomial distribution	5
	Hypothesis test for the mean of a Poisson distribution	4
		60 hours

Statistics 3

Unit	Title	Estimated hours
1	Combinations of random variables: Distribution of linear combinations of independent Normal random variables	7
2	Statistical sampling: Understand and use sampling techniques; Compare sampling techniques in context	4
3	Estimation, confidence intervals and tests	
a	Concepts of standard error, estimator and bias, including the quality of estimators	5
\underline{b}	Concept of a confidence interval and its interpretation	2
C	Confidence interval for the mean of a Normal distribution with known variance	3
d	Statistical hypothesis testing for the mean of the Normal distribution	6
e	Use of the Central Limit Theorem	4
$\underline{\text { f }}$	Hypothesis test for the difference between the means of two independent Normal distributions with known variances	3
g	Use of large sample results, hypothesis test for the difference between the means of two independent distributions with unknown variances	3
4	Goodness of fit and contingency tables: Chi-squared tests	12
5	Regression and correlation	
$\underline{\text { a }}$	Spearman's rank correlation coefficient	5
\underline{b}	Hypothesis testing for zero correlation	6
		60 hours

Decision Mathematics 1

Unit	Title	Estimated hours
1	Algorithms	
	Introduction to algorithms	4
	Sorting, searching and packing algorithms	8
2	Algorithms on graphs	
	Introduction to graph theory	2
	Minimum connectors (spanning trees)	4
	Dijkstra's algorithm	4
3	Algorithms on graphs II	
	Route inspection problem	4
	Travelling salesman problem	8
$\begin{array}{lll}4 & \\ & \underline{a} \\ & \underline{b} \\ & \underline{c} \\ & \underline{c} \\ & \underline{d}\end{array}$	Critical path analysis	
	Activity networks; precedence tables	5
	Critical path algorithm; earliest and latest event times	4
	Total float; Gantt charts	3
	Scheduling	5
$\begin{array}{rlr}5 & \\ & \underline{\text { a }} \\ & \underline{b} \\ & \underline{c}\end{array}$	Linear programming	
	Formulation of problems	3
	Graphical solutions	4
	Integer solutions	2
		60 hours

